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A VLBI survey at 2.29 GHz of the northern polar cap region (declination > 69 deg)
has been conducted using a baseline consisting of the NASA Deep Space Network (DSN)
sites at Goldstone, California and Muadrid, Spain. The purpose of this survey was to
identify sources in the northern polar cap region which possess milliaresecond compo-
nents. High declination VLBI sources provide valuable geometric coverage for determin-
ing the spin axis components of baselines. Out of 48 candidate sources selected from the
Bonn 5-GHz survey, 42 were detected to have compact structure on the California/Spain
baseline at the 2.29-GHz observing frequency. This polar survey is part of a more general

VLBI sky survey.

l. Introduction

Up to the present time, there has been an insufficient
number of known high declination celestial radio sources that
have strong milliarcsecond components suitable for VLBI
observations. This paper presents the results of a recent search
of the northern polar cap region for such VLBI sources. These
results are part of a general sky survey for VLBI sources
sponsored by the Deep Space Network Advanced Systems
Program (Ref. 1).

High declination VLBI sources provide valuable geometric
coverage for determining more accurate estimates of the spin
axis components of baselines in VLBI programs aimed at
clock synchronization, earth rotational orientation, and geo-
detic baseline measurements. The deficiency of high declina-
tion VLBI sources was due to the lack of high-frequency
single antenna surveys in the northern polar cap region (declin-
ation > 69 deg). Such surveys permit sources to be identified
that might possess compact structure at the milliarcsecond
level,

A high-frequency single-antenna survey involving several
sources from the 69- to 90-deg declination zone was recently
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performed at the 100-m antenna at Bonn, Germany, at 4.9
GHz (Ref. 2). Candidate high declination VLBI sources were
chosen from this survey based on the following criteria:

(1) Total flux density at 4.9 GHz was greater than 0.5
Jansky .

(2) Spectral index from 2.7 to 4.9 GHz was greater than
-0.6.

There were a total of 48 candidate sources selected from
the Bonn survey. Of these sources, 17 had total flux densities
at 4.9 GHz greater than 1 Jansky, and 31 had total flux
densities between 0.5 and 1.0 Jansky. These 48 sources were
then observed during three different observing sessions in
March 1980.

ll. Experiment Configuration

The VLBI observations were performed on March 3, 12/13,
and 28, 1980, using a baseline consisting of a 26-m telescope
(DSS 13) at Goldstone, California, and a 64-m telescope
(DSS 63) at Madrid, Spain. The observations were performed
at 2.29 GHz with right circular polarization. The receiver chain




consisted of an S-band traveling wave maser followed by 2
phase-stable S-band receiver (VLBI receiver at DSS 13 and
BLOCK IV receiver at DSS 63) which converted the signal
to an IF of 50 MHz. The Mark II (or BLOCK 0) VLBI record-
ing system then recorded a 1.8-MHz sideband by digitally
sampling at a 4-Mb/s rate. Phase stability of the receiver
chain and digital sampling were controlied by hydrogen maser
atomic clocks at both stations. Each observation of a source
was 3 minutes in duration, with most sources being observed
twice. The Goldstone-Madrid interferometer has a length of
8396 km corresponding to 64 million wavelengths at 2.29
GHz. This corresponds to a fringe spacing of 3 milliarcseconds.

lll. Data Reduction

Matching tapes from both stations were then cross-corre-
lated using the Caltech/JPL, Mark II VLBI processor. Com-
puter manipulation of the correlator output yielded the
correlation coefficient for each observation or the fraction of
bits on the two tapes that were correlated. The correlation
coefficients were then converted into correlated flux density
or the VLBI strength for each celestial radio source observa-
tion, using the procedure discussed in a previous paper (Ref. 1),
with a scaling constant of 2.5 £ 0.1.

The 5-sigma detection limit for each observation was about
0.1 Jansky. Correspondingly, the uncertainty in detected
source strength due to random noise was about 0.02 Jansky.
However, in practice, systematic errors at about the 8% level
dominate the random contribution for most sources.

The tapes must be correlated over a range of relative tape
delay and delay rate offsets to compensate for a priori source
position uncertainties. Appropriate searches in these param-
eters were performed so that the sky was completely searched
within 30 arcseconds of all nominal source positions. The 6
sources not detected are assumed to have been within the
range of position searching.

The measured delay and delay rate offsets for detected
sources allowed the source positions to be determined to
about the 0.5-arcsecond level. Instrumental biases were re-
moved by observing sources with accurately known positions
throughout each experiment. Atmospheric contributions to
delay and delay rate were modeled by monthly mean values
(Ref. 3) and earth rotational position was determined accord-
ing to standard Bureau International de 1’ Heure (BIH) values
of UT1-UTC and polar motion. Ionospheric effects were not
modeled and are assumed to be the limiting error source. An
uncertainty of 0.4 arcseconds was quadratically added to all
error estimates to account for unmodeled effects. The tech-

nique of reducing the delay and delay rate observables into
source positions is discussed in another paper (Ref. 4).

In addition to measurements of correlated flux density
and source position, measurements of total flux density were
performed at DSS 13 for most sources using a noise adding
radiometer (Ref. 5). The uncertainty in the total flux density
measurements is mostly due to the 0.03 kelvin errors in the
measurement of system temperature, but in the case of the
strong sources is dominated by the 3% errors in the value of
antenna sensitivity (K/Jansky). The 0.03 K temperature
uncertainty translates to a 0.3 Jansky uncertainty in total
flux density. Multiple averaging of total flux density estimates
results in decreased uncertainties when multiple observations

Antenna sensitivity at each site was determined by using
observations of flux calibration sources (Ref.6). Pointing
errors were kept to a negligible level by boresighting a few
strong sources in the northern polar cap region.

IV. Results and Discussion

Of the 48 northern polar cap sources on which VLBI
observations were performed, 42 were found to have detect-
able milliarcsecond structure. The detailed results appear in
tabular form in Table 1. Notes regarding table entries appear
in Table 2.

A correlated flux density histogram appears in Fig. 1. A
total of three sources had correlated flux densities of greater
than one Jansky, while a total of 20 sources had correlated
flux densities of greater than 0.4 Jansky. A sky distribution
plot of the detected 42 sources appears in Fig. 2. Here the
average value of the correlated flux density was used to
determine the source strength symbol used in the plot.

Since the declinations of these sources are all above 69
degrees, they are visible 24 hours a day from the antennas used
in these observations. This allows a wide range of spatial
frequencies to be sampled. Detectable variation in the mea-
sured correlated flux density as a function of observation time
might be observable due to source structure effects. Therefore,
all but six candidate sources were observed at least twice,
with the observations occurring at widely different hour
angles whenever possible. The following sources exhibited
significant three-sigma variation in correlated flux density
between observations, indicating complex structure: 0604+72,
0740+82, 4C 71.07, 0950+74, 1039+81, 1044+71, 1058+72,
3C 309.1, 1637+82, 1749+70, 1803+78, 1928+73, 1946170,
and 2007+77. Source structure may be an important consider-
ation for high accuracy VLBI measurements, and the effects
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of sources such as these on interferometric phase should be
understood when selecting candidate VLBI sources.

Ten of these 48 northern polar cap sources were recently
observed by Waltman et al. (Ref.7) on a baseline having
comparable resolution, but at a higher observing frequency
(5 GHz).

V. Conclusion

Forty-two sources with declinations greater than 69 degrees
were found to have compact structure at 2.29 GHz on the
Goldstone/Madrid VLBI baseline. These northern polar sources
will be useful for VLBI experiments in which determination of
the spin axis components of baselines is important.
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Table 2. Notes for Table 1

Column

Description

1
2,3 .

Source name

Source position: right ascension and declination. The .

positions are referenced to the equinox of 1950.0, and
elliptical aberration terms are included so as to agree
with past astronomical convention,

Source position reference code: If no reference code
is given, the position was estimated from the delay and
delay rate observables. Otherwise the position was
obtained from one of the following references:

Code ~ Reference

1 Waltman et al. (Ref. 7)
2 JPL Reference Frame Catalog (Ref. 8)
3 Bonn Catalog (Ref. 2)

The detected sources whose positions came from these
references had well-known positions and allowed
instrumental biases to be calibrated.

Experiment codes: A = 3 March 1980
B =12/13 March 1980
C = 28 March 1980

Total flux density and uncertainty in Jy.
Correlated flux density and uncertainty in Jy.

Fringe visibility and uncertainty: Defined as the ratio
of correlated flux density to total flux density or the
fraction of flux density detected by the interferometer
as coming from the milliarcsecond core.

Spatial frequencies: U is the east-west component of
the baseline projection against the sky, and V is the
north-south component of the baseline projection
against the sky. These are given in millions of wave-
lengths.
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Fig. 1. Correlated flux density histogram
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Fig. 2. Sky distribution plot of detected sources
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